Insect-Like Mapless Navigation Based on Head Direction Cells and Contextual Learning Using Chemo-Visual Sensors

Zenon Mathews, Miguel Lechón, J.M. Blanco Calvo, Anant Dhir
Armin Duff, Sergi Bermúdez i Badia and Paul F.M.J. Verschure

Abstract—An approach to mapless autonomous navigation is presented that is based on insect neuroethology. In order to achieve this we implemented a real-time neuronal model based on the Distributed Adaptive Control framework. The model unifies different aspects of insect navigation and foraging including landmark recognition, chemosearch, path integration and optimal memory usage. Consistent with recent insect literature the model supports navigation using heading direction information, thus precluding the use of global information. We test our model using a biomimetic mobile robot performing a foraging task. The robot forages for chemical sources in a wind tunnel, during which it memorizes trajectories it had followed, using information of landmarks and heading direction accumulators. After foraging, landmark navigation is tested with the odor source turned off. Results show stability against robot kidnapping and generalization of homing behavior to stable mapless landmark navigation. Our results demonstrate that allocentric and efficient navigation strategies can be generated by relying on purely local information.

I. INTRODUCTION

Navigation skills in unknown environments is a crucial feature for the survival of foraging animals. Some remarkable behaviors such as landmark navigation, homing, path integration (PI) and learning are in many occasions required to perform successful foraging. Foraging is a common feature carried out successfully by a wide range of animals, from mammals to insects [1], [2], [3], [4].

The concept of cognitive map for navigation was fuelled by the discovery of place cells and has widely increased our understanding of cognitive navigation mechanisms [5], [6]. It spawned early research on navigational strategies in cognitive neuroscience which is based on hippocampal representations of the surrounding space [7], [8], [9]. While mammals are assumed to learn a place/map-like representation for foraging [5], [6], this does not seem the case in insects.

Insect navigation has been studied for more than a century [10], [11], [2]. Interestingly, a wide range of findings suggest that insects do not rely on a map for solving foraging tasks [12], [11]. Recent studies suggest that rather than using map-like representations, insects make optimal use of proprioception, landmark recognition and memory to navigate [4]. In particular, desert ants use sun position and visual panorama for heading direction computation [13], [2]. Complex foraging behaviors can be seen both in mammals like rodents but also in insects like ants, which have considerably lower computational resources with only hundreds of thousands of neurons. Therefore, insect navigation studies are useful in that they reveal essential components for an efficient mapless navigation strategy. Moreover, this is even more relevant for robotic implementations of autonomous systems and artificial foragers.

Despite massive advances in computing power and classical branches of robotics [14], [15], [16], [17], robotic autonomous navigation, even with the use of global positioning information, remains a challenge. Until today many neurobiologically plausible models of navigation paradigms have been proposed for mobile robots [18], [19]. Biomimetic robotic models of navigation have recently seen great interest in the wake of neurobiological studies of the so called place cells in the mammalian hippocampus [19], [20], [21], [22]. The above models explain navigation from place to place only in very restricted familiar environments like mazes and small enclosures [23]. Navigators using such map based models of navigation are required to learn those place representations [24], [25]. Moreover, few of those models have been tested with real robots [20], [22]. As map based navigation strategies suffered from an inability to traverse unvisited regions of space, newer theories have incorporated path integration and head direction signals [26]. Even more recent versions also include cortical grid cells but still concentrate on the self-localization aspect of navigation rather than navigation between places [27], [28]. At the same time, the parsimonious navigation strategies of insects offer a guideline for computationally cheaper and eventually simpler navigation methods for mobile robots. A number of models exploit and reproduce some of the capabilities required during foraging [29], [30], [31]. However, many are biologically unrealistic and only deal with a very limited foraging task.

This paper describes a comprehensive mapless biologically based model, including chemical search, PI and landmark navigation, of insect navigation strategies and it is implemented in the framework of the Distributed Adaptive Control (DAC) [32], [33]. The organization of behavior and optimal use of landmark recognition, proprioceptive infor-
mation, heading direction information and memory usage is controlled by DAC and tested on an artificial foraging ant robot. The results show a successful integration of a number of biologically based models and behaviors that give rise to realistic foraging. Moreover, our model explains the generalization process as a probabilistic use of memory, which generates allothetic behavior from a limited set of idiothetic cues.

II. METHODS

A. Experimental setup

The experimental scenario consists of a robot forager called SyntheticAnt, which is tested in a controlled indoor environment (figure 1). The test environment has a wind-tunnel used by SyntheticAnt to localize the feeder making use of an odor plume. The wind-tunnel floor contains a set of visual cues (landmarks) for SyntheticAnt to learn its way through the environment. A vision based overhead tracking system (AnTS) is used to localize the robot and compute its heading direction within the test arena, allowing for an analysis of the behavior of the robot.

B. Task

The task of the SyntheticAnt is to perform foraging making use of chemical sensing to localize food, and vision to learn its way through the environment, followed by successful homing. SyntheticAnt leaves its nest (marked by a visual cue) embarking on a foraging task to find a food source by following an odor plume up to its source (marked by another visual cue). On this outgoing route, the robot has to detect visual cues placed on the floor. Upon feeder detection, it has to return to nest using path integration information and restart foraging again. After foraging, landmark memorization is tested by placing the robot in an arbitrary location in the absence of the odor plume. Hence, SyntheticAnt has to recall the memorized landmarks and be able to navigate to other landmarks, including the nest and the feeder.

C. Foraging Model

SyntheticAnt makes use of the Distributed Adaptive Control (DAC) architecture [32], [34] for the integration of a number of biologically based models and behaviors that give rise to a realistic foraging behavior. DAC consists of three, tightly coupled, layers for behavioral control: the reactive, adaptive and contextual layers (figure 3). The reactive control layer provides the behaving system with a pre-wired repertoire of reflexes such as collision avoidance, chemosearch, homing etc. The adaptive layer provides the mechanisms for the processing and classification of sensory events. The sensor and motor representations formed at the level of the adaptive layer provide the input to the contextual layer, which acquires, retains, and expresses sequential representations using systems for short-term and long-term memory. These representations are used to plan ongoing behavior, and have been shown to be compatible with formal Bayesian models of decision making [34]. All computations are implemented using the neural simulation tool IQR [35].

D. Reactive behaviors

The reactive layer of SyntheticAnt implements a set of reactive behaviors shown below:

- For chemical search, SyntheticAnt implements a model based on the best studied case of chemotactic behavior, the moth chemotaxis as in [31]. It consists of an upwind movement (surge) whenever the animal perceives the odor stimulus and otherwise an oscillatory crosswind search (cast) until the odor plume is found again.
- Collision avoidance is performed using virtual proximity sensors, derived from the tracking system (figure 1).
- Upon feeder detection, SyntheticAnt returns to nest using a computed home vector by means of path integration, further referred to as homing.

In the absence of the odor plume SyntheticAnt’s surge-and-cast reactive behavior simplifies to a simple cast, which enables SyntheticAnt to explore the environment until a memorized landmark is encountered.

Fig. 1. (A) The artificial forager SyntheticAnt. The robot is equipped with a wireless color camera for visual cue recognition, a chemosensor array for odor detection, a wind sensor for wind direction computation and three LEDs for head direction computation using an overhead tracking system. The camera image is transmitted using a 2.4 GHz analogue wireless link. The exchange of motor commands and sensor readings with the robot are realized via a serial port over Bluetooth. (B) Wind-tunnel arena. At the back of the wind-tunnel there are exhaust ventilators that create a controlled wind flow inside the tunnel. Visual cues are placed on the floor and an overhead vision based tracking system (AnTS) is used to reconstruct the position and heading direction of the robot.
Fig. 2. (A) Activation of HDA cells as a sinusoidal function of the angular difference from the cell’s preferred angle. (B) HDA-set activation for a group of 36 HDA cells (one for each 10°) for a movement indicated by the arrow. Blue and red lines represent positive and negative activations respectively. Each HD accumulator cell stores the value $d \times \cos \theta$ where d is the distance indicated by the movement arrow and θ the deviation of angle of the movement from the preferred angle of the accumulator cell. The slope of activation falls as a function of angular deviation from the actuated direction and is 0 at 90°. (C) A sample foraging run from nest to feeder traversing some landmarks indicated by the colored shapes. Individual path segments from landmark to landmark are indicated by numbers 1..4. (D) HDA cell activities at the end of each path segment. Y axis represents the cell activity and correlates with the distance traveled in the preferred angle of each cell (firing rate as distance coding). The X axis stands for the accumulator cells 1 to 36. The red vertical line with the corresponding number at the X axis shows the accumulator cell with the highest activity. (E) During the foraging runs from the nest to the feeder, encountered landmarks are chained in the DAC contextual layer short-term memory (STM) together with the HDA set. Upon feeder detection the contents of the STM are transferred into the LTM and the HDA-set is reset. After several foraging runs, the LTM contains segment sequences of different lengths since in each foraging run only a subset of available landmarks are visited. During the recall phase, the HDA-sets starting from the recalled segment to the goal segment are combined to compute the optimal route to the feeder. Note that the recalled segment and the goal segment can be on different LTM sequences, in which case the segments from the current landmark to nest on one sequence, and nest to goal landmark on the other have to be combined.

E. Landmark Recognition

Landmark recognition is implemented using a neural network using the neural simulation tool IQR [35] for image processing to recognize the presence of landmarks and to extract features. Prominent hue and edge features of visited landmarks are extracted.

F. Heading Direction Accumulation

Path integration (PI) is the use of self-motion cues to compute the vector between the navigator’s current position and the starting point. In our model we make use of head direction information and proprioceptive information to compute PI. We propose the use of head direction accumulators (HDA), as postulated in [23]. A HDA is a neuron that fires only when the navigator heads in a particular direction, which defines its direction specificity. Furthermore, the firing rate of such a neuron correlates with the distance covered in that direction (figure 2). HDAs are assumed to integrate sensory information such as optic flow, polarized photoreceptors, sun position and proprioceptive information until reset [23]. Hence, a group of HDA neurons each of which is tuned to a different angle at equal intervals covering 0 to 360 degrees encodes the direction and distance from the previous position at which the HDA-set was reset. The activation of an HDA-set is governed by a cosine function as shown in figure 2. The slope of the activation rate is highest when the

G. Short and Long Term Memory

The contextual layer supports the formation of more complex representations of perception and events (processed by adaptive layer) expressing their relationship in time. In the case of the SyntheticAnt, pairs of visual cues and HDA information form basic memory elements, called memory segments. During the acquisition phase (foraging) salient events (cue detections) are first stored in short-term memory (STM) together with the current HDA. When the goal state is reached, the content of the STM is stored in the long-term memory (LTM) as a sequence (figure 3). During the recall phase (landmark navigation), the LTM is matched against the current sensory events. Matching LTM sequences containing both current perception and goal cues are recalled to compute the optimal route from the current position to the goal landmark. Matching is accomplished by the following...
distance function:

\[d(a, b) = \frac{1}{K} \sum_i \left| \frac{a_i}{\text{max}(a)} - \frac{b_i}{\text{max}(b)} \right| \] (1)

where \(a \) and \(b \) are vectors in \(\mathbb{R}^K \) and \(a \) is the current activity of the cue information and \(b \) is the stored cue information. A segment is selected when the distance \(1 - d(a, b) \) is higher than a predefined threshold. The selected segment and segments stored in the same sequence together contain the accumulated PI information (HDA) to the goal.

To compute the optimal route from the currently perceived landmark to an arbitrary landmark, we consider the scenario where the currently selected segment (landmark) and the goal segment (landmark) are on different LTM sequences.

To do this, we first compute the homing vector by summing and inverting the HDA-sets stored in all segments from the currently selected segment until nest on the first sequence. And to this we add the sum of the HDA-sets from nest to the goal segment (landmark) on the second sequence. This allows computing optimal routes between any two landmarks represented in arbitrary segments in the whole LTM.

After multiple foraging runs, SyntheticAnt might encounter landmarks, that had been seen in different foraging runs. This will select segments of different sequences in the LTM during recall. In this case, each selected segment will return a homing vector, which have to be merged optimally. This generalizes from homing to landmark navigation if the goal landmark is not the nest. In general we refer to the decoded heading direction and distance as action (or action HDA-set). Assuming a white noise error, this decoded heading direction and distance to the goal can be formulated as a 2D Gaussian probability distribution:

\[X \sim N(\mu, \sigma^2) \] (2)

where \(X = [\alpha, \delta]^T \), \(\alpha \) is the angle and \(\delta \) the distance coded by the action HDA-set. The action HDA-set, \(X \), can be formulated as a Gaussian distribution with mean \(\bar{\mu} \) and variance \(\sigma^2 \). The variance \(\sigma^2 \) grows with the total distance \(\text{dist} \) covered during the heading direction accumulation. This can generally formulated as a function: \(\sigma^2 = f(\text{dist}) \). Given this Gaussian distribution for each recalled segment action, we use Bayesian inference to compute the best action. If \(n \) actions are recalled, the best action \(a \) is the action with the highest conditional probability: \(P(a|X_1, X_2, ..., X_n) \). And using Bayes theorem, the probability of the optimal action is computed:

\[P(a|X_1, X_2, ..., X_n) = \frac{P(a)P(X_1, X_2, ..., X_n|a)}{P(X_1, X_2, ..., X_n)} \] (3)

where the numerator \(P(a)P(X_1, X_2, ..., X_n|a) \) is the joint distribution \(P(a, X_1, X_2, ..., X_n) \) and the denominator \(P(X_1, X_2, ..., X_n) \) is a constant without effect.

Using conditional independence of memory sequences, the above equation can be reformulated as:

\[P(a|X_1, X_2, ..., X_n) \propto P(a) \prod_{i=1}^{n} P(X_i|a) \] (4)

\(P(a) \) is uniformly distributed in an a priori unknown environment. Therefore, the computation of \(P(a) \) in equation 4 can be reduced to the product of Gaussians \(X_1, X_2, ..., X_n \). The resulting action with the highest probability is optimal in the Bayesian sense.

III. RESULTS

SyntheticAnt was exposed to tests in the arena shown in figure 1, where it had to forage starting from the nest and find the feeder placed at the upwind end of the wind-tunnel. Upon feeder detection it then had to compute the homing vector and return to nest. After foraging runs, the chemo source was switched off and **SyntheticAnt** was kidnapped and placed in an arbitrary position in the arena. It then had to find a landmark and reach other landmarks on optimal routes.

The overhead camera is used to track the position of the robot for data analysis, together with the logged data from the neural simulation of the model. Figure 4 A, shows a foraging run through landmarks and homing behavior on a straight line to the nest from the feeder. Encountered landmarks during the foraging run are shown as green circles in figure 4, A. The nest is indicated by the blue rectangle. After a foraging run, when the feeder is found, the homing vector is recalled automatically and the DAC reactive layer of **SyntheticAnt** initiates the homing behavior. **SyntheticAnt** is also able to generalize homing to landmark navigation and
Fig. 4. All plots are superimposed on the image from the tracking camera. The vertical bar in the middle of the image belongs to the wooden structure of the wind-tunnel and does not interfere with the movement freedom of SyntheticAnt. (A) Foraging and homing. The red dots indicate position of SyntheticAnt during chemosearch (foraging) from nest to feeder. The upwind anemotactic chemosearch using the surge-and-cast algorithm gives rise to the oscillatory movement until the odor plume can be sensed. The green circles indicate encountered landmarks. Note that not all available landmarks are detected. The white arrows indicate the corresponding HDA sets memorized using the DAC contextual layer. The blue square on the right is the feeder. The yellow arrow corresponds to the computed homing HDA. The yellow track shows the homing behavior of the robot after feeder detection. The homing path shows a zig-zag movement as the robot tries to correct its current heading direction using the difference between the accumulated HDA starting at the feeder and the contextual memory response HDA. Such a correction is equivalent of the general proportional controller. (B) Different nest to feeder trajectories. To test the generalization of homing to landmark navigation, we forced SyntheticAnt to go on two different trajectories from nest to feeder (indicated as run 1 and run 2, leading through available landmarks. During these runs encountered landmarks (shown in green) and the corresponding HDA sets are memorized. Note that all available landmarks are detected in both the runs together, in order to test the recall. (C) Kidnapping and generalization of homing. After the runs shown in B, SyntheticAnt is kidnapped and placed in an arbitrary position in the arena. SyntheticAnt employs the cast behavior until it finds a landmark it had memorized (shown as the SyntheticAnt position). It then recalls all possible straight routes to other landmarks including the nest and feeder, indicated by the white arrows. (D) Navigation of recalled routes. After recalling routes to other landmarks as shown in C, SyntheticAnt carries out the traversal of the same until the goal landmark is recognized. The different trajectories are plotted in different colors.
can traverse unknown paths to go from a given landmark to another landmark encountered during a different foraging run (figure 4 B,C,D). This is achieved by summing the homing vector computed from one sequence with the vector that leads from nest to the goal landmark computed from the other sequence. If multiple sequences are recalled from the DAC contextual layer, the Bayesian fusion of the computed HDA sets are performed for the optimal path.

In figure 4, the memorized and computed HDA sets are shown as arrows. Decoding of an HDA neuron group into the direction α is done as following:

$$\alpha = \frac{360}{N} * I$$

where N is the number of neurons in the HDA set and I the index of the neuron with highest activity in the set. The distance D is coded directly by the activity rate of the neuron I. See also figure 2 A,B,C,D for HDA coding.

Figure 5 is the density plot of tracking data and summarizes the typical behavior of SyntheticAnt during 5 foraging runs. The landmark regions get very high density as landmark recognition stops the robot for some time to ensure precise feature extraction of the landmark. Also some peripheral regions have relatively high densities as the robot stops there to avoid collision avoidance. A video clip submitted with the paper demonstrates the behavior of the robot during a foraging run.

The use of overhead tracking for the computation of the heading direction and proprioception of the SyntheticAnt gives highly precise HDA-sets. This is very useful to test the feasibility of our insect-model and also to conduct tests inside a wind-tunnel. However this is not the case in real world. Therefore in future work this will be replaced by odometry sensors (e.g. using optic flow) and heading direction sensors (e.g. using solar compass). This means that the precision of HDA computation will fall as such sensors have intrinsic errors. As error in heading direction and path integration accumulates with the distance traveled, the precision of the computed HDA falls. To evaluate the performance of our system when using such imperfect information, we conducted the following experiment. From three foraging runs of SyntheticAnt going through different landmarks, we evaluated the error in the computation of the homing vector when using one, two or three recalled DAC LTM sequences. Noise in the HDA sets for each path-segment in each sequence (from one landmark to the next), was modeled as linearly correlated with the distance traveled. i.e. a white noise of mean zero and a variable variance (SNR) proportional to the distance traveled was induced on each HDA set. After this, the homing vector was computed in three different ways: using each of the three sequences individually, by combining just two of the three and by combining all three together. The fusion of different sequences was done using the DAC Bayesian fusion algorithm described earlier. We assessed the robustness of the system by measuring the error when varying the signal to noise ratio (SNR) from 0.1 to 100. Results show that the error falls with the number of sequences used to compute the homing vector (number of runs/experience of the forager) for all ranges of the SNR values of sensors, see figure 6. This on one hand justifies the Bayesian merging of LTM responses but also indicates the validity of the proposed insect-model also when using real odometry and heading direction sensors.

![Fig. 5. Foraging behavior as density plot: Position data from five foraging runs of SyntheticAnt were used. The high density areas are near landmarks, the nest (leftmost high density circle) and feeder (rightmost high density circle). Also some peripheral areas have relatively high densities due to the fact that SyntheticAnt stops to avoid collisions. The plot illustrates the typical behavior of the robot during foraging.](image1)

![Fig. 6. Bayesian merging of LTM sequences: The error in homing vector computation (or in landmark to landmark route recall in general) is negatively correlated with the SNR of the HDA computation. For low SNRs (i.e. low precision sensors) the error rises drastically. Whereas for high SNRs (high precision sensors) it falls. The errors when using one, two or three LTM sequences in combination are plotted. The colored lines are mean values and the patches signify standard deviation. Using more LTM sequences is clearly preferable thanks to the Bayesian merging algorithm. The error falls for increasing number of LTM sequences used for all ranges of SNR values of sensors.](image2)

A remarkable property of the three coupled control layers of DAC is the emergence of some useful behavioral properties. One of them is maneuvering in a dynamically changing world. To test this behavior we placed obstacles in the arena as SyntheticAnt was performing landmark navigation or
Fig. 7. Acting in a dynamic world: SyntheticAnt was exposed to obstacles placed on its route during homing or landmark navigation. In a typical example as in the figure, the collision avoidance reactive control competes with homing behavior and maneuvers SyntheticAnt around the collision. The heading direction to the nest is simultaneously corrected and the robot returns to nest. This capability emerges intrinsically from the three coupled layers of DAC and allows SyntheticAnt to act in a dynamically changing world with moving objects.

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td># total neurons</td>
<td>62771</td>
</tr>
<tr>
<td># total neuron groups</td>
<td>252</td>
</tr>
<tr>
<td># integrate and fire</td>
<td>29</td>
</tr>
<tr>
<td># linear threshold</td>
<td>202</td>
</tr>
<tr>
<td># random spike</td>
<td>21</td>
</tr>
<tr>
<td># total synapses</td>
<td>103872</td>
</tr>
<tr>
<td># cells in HDA set</td>
<td>72</td>
</tr>
<tr>
<td># cells in landmark features</td>
<td>2 × 4</td>
</tr>
<tr>
<td>processes</td>
<td>16</td>
</tr>
</tbody>
</table>

TABLE I

NEURAL SIMULATION PARAMETERS

homing. The collision avoidance reactive behavior then had to compete with the previously active behavior mode (e.g. homing or surge-and-cast) to maneuver around the obstacle. Thereby the desired heading direction has to be corrected for the movement of the robot. A typical example of such a maneuver is shown in figure 7. SyntheticAnt runs on an Intel(R) Core(TM)2 Duo CPU 2.66GHz machine with Linux Suse10.3 operating system at about 35 Hz. The parameters of the neural simulation using the IQR toolkit [35] is summarized in table I.

IV. CONCLUSIONS

We presented a mapless navigational model based on insect navigation strategies. This biologically based model includes different aspects of insect-navigation like chemical search, PI and landmark navigation and is implemented using the distributed adaptive control framework. Our model is implemented and tested on a biomimetic robot for a chemo foraging task. Unlike navigational strategies based on place/map like representations, our model uses heading direction accumulation and proprioceptive information in combination with landmark recognition. This approach proposes a solution to autonomous navigation without having the need to learn place representations. SyntheticAnt is able to learn a graph structure using local cues, heading direction accumulation and memory usage. Consistent with insect studies, our model is stable against landmark addition or removal as this does not affect the learned DAC LTM. An interesting addition to the model would be forgetting, which would allow the forager to forget LTM sequences that include landmarks that were displaced after learning.

Going beyond the insect world, the theory is also consistent with environmental exploration of rats, which move along wall edges and between prominent landmarks when placed in novel enclosures [12]. Such an exploration pattern was also observed in humans and is optimal for creating waypoints and heading vectors, but not optimal for creating a representation of continuous space [37]. Finally, as discussed in [23], the heading-vector framework unifies various navigation forms from rodents in laboratory environments to long distance bird migration. Taking parsimony as the principle behind optimality, insect navigation strategies as the one proposed in the model provide inspiration for future work on mobile robots that act in the real-world. The distributed adaptive control thereby provides the unifying framework for combining different aspects of perception, memory and behavior.

V. ACKNOWLEDGMENTS

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 216916 for NEUROCHEM and EU SYNTHETIC FORAGER (FP7-217148) projects. The authors would like to thank Hector Tapia Simó for help in maintaining the SyntheticAnt and Eduard Sellabona for editing the foraging video clip.

REFERENCES

